Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Psychiatr Res ; 170: 318-327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194849

RESUMO

Major depressive disorder (MDD) remains a significant global health concern, with limited and slow efficacy of existing antidepressants. Electroconvulsive therapy (ECT) has superior and immediate efficacy for MDD, but its action mechanism remains elusive. Therefore, the elucidation of the action mechanism of ECT is expected to lead to the development of novel antidepressants with superior and immediate efficacy. Recent studies suggest a potential role of hippocampal astrocyte in MDD and ECT. Hence, we investigated antidepressant effect of electroconvulsive stimulation (ECS), an animal model of ECT, -related genes in hippocampal astrocyte with a mouse model of MDD, in which corticosterone (CORT)-induced depression-like behaviors were recovered by ECS. In this model, both of CORT-induced depression-like behaviors and the reduction of hippocampal astrocyte were recovered by ECS. Following it, astrocytes were isolated from the hippocampus of this model and RNA-seq was performed with these isolated astrocytes. Interestingly, gene expression patterns altered by CORT were reversed by ECS. Additionally, cell proliferation-related signaling pathways were inhibited by CORT and recovered by ECS. Finally, serum and glucocorticoid kinase-1 (SGK1), a multi-functional protein kinase, was identified as a candidate gene reciprocally regulated by CORT and ECS in hippocampal astrocyte. Our findings suggest a potential role of SGK1 in the antidepressant effect of ECS via the regulation of the proliferation of astrocyte and provide new insights into the involvement of hippocampal astrocyte in MDD and ECT. Targeting SGK1 may offer a novel approach to the development of new antidepressants which can replicate superior and immediate efficacy of ECT.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Camundongos , Animais , Transtorno Depressivo Maior/tratamento farmacológico , Astrócitos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Hipocampo/metabolismo , Corticosterona/farmacologia
2.
J Psychiatr Res ; 170: 375-386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38215648

RESUMO

Clinical and preclinical studies suggest that hippocampal astrocyte dysfunction is involved in the pathophysiology of depression; however, the underlying molecular mechanisms remain unclear. Here, we attempted to identify the hippocampal astrocytic transcripts associated with antidepressant effects in a mouse model of depression. We used a chronic corticosterone-induced mouse model of depression to assess the behavioral effects of amitriptyline, a tricyclic antidepressant. Hippocampal astrocytes were isolated using fluorescence-activated cell sorting, and RNA sequencing was performed to evaluate the transcriptional profiles associated with depressive effects and antidepressant responses. Depression model mice exhibited typical depression-like behaviors that improved after amitriptyline treatment; the depression group mice also had significantly reduced GFAP-positive astrocyte numbers in hippocampal subfields. Comprehensive transcriptome analysis of hippocampal astrocytes showed opposing responses to amitriptyline in depression group and control mice, suggesting the importance of using the depression model. Transcription factor 7 like 2 (TCF7L2) was the only upstream regulator gene altered in depression model mice and restored in amitriptyline-treated depression model mice. In fact, TCF7L2 expression was significantly decreased in the depression group. The level of TCF7L2 long non-coding RNA, which controls mRNA expression of the TCF7L2 gene, was also significantly decreased in this group and recovered after amitriptyline treatment. The Gene Ontology biological processes associated with astrocytic TCF7L2 included proliferation, differentiation, and cytokine production. We identified TCF7L2 as a gene associated with depression- and antidepressant-like behaviors in response to amitriptyline in hippocampal astrocytes. Our findings could provide valuable insights into the mechanism of astrocyte-mediated antidepressant effects.


Assuntos
Amitriptilina , Astrócitos , Camundongos , Animais , Amitriptilina/farmacologia , Amitriptilina/metabolismo , Astrócitos/metabolismo , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Hipocampo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...